Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(sqr(activate(X)), dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(sqr(activate(X)), dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__dbl(X)) → DBL(X)
SQR(s(X)) → ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(X)
TERMS(N) → SQR(N)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
DBL(s(X)) → ACTIVATE(X)
SQR(s(X)) → DBL(activate(X))
SQR(s(X)) → SQR(activate(X))
ACTIVATE(n__terms(X)) → TERMS(X)
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(X1, X2)
SQR(s(X)) → S(n__add(sqr(activate(X)), dbl(activate(X))))
TERMS(N) → S(N)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ADD(s(X), Y) → S(n__add(activate(X), Y))
DBL(s(X)) → S(n__s(n__dbl(activate(X))))

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(sqr(activate(X)), dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__dbl(X)) → DBL(X)
SQR(s(X)) → ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(X)
TERMS(N) → SQR(N)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
DBL(s(X)) → ACTIVATE(X)
SQR(s(X)) → DBL(activate(X))
SQR(s(X)) → SQR(activate(X))
ACTIVATE(n__terms(X)) → TERMS(X)
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(X1, X2)
SQR(s(X)) → S(n__add(sqr(activate(X)), dbl(activate(X))))
TERMS(N) → S(N)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ADD(s(X), Y) → S(n__add(activate(X), Y))
DBL(s(X)) → S(n__s(n__dbl(activate(X))))

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(sqr(activate(X)), dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

SQR(s(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → DBL(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(X)
TERMS(N) → SQR(N)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
SQR(s(X)) → DBL(activate(X))
SQR(s(X)) → SQR(activate(X))
ACTIVATE(n__terms(X)) → TERMS(X)
ADD(s(X), Y) → ACTIVATE(X)
SQR(s(X)) → S(n__add(sqr(activate(X)), dbl(activate(X))))
ACTIVATE(n__add(X1, X2)) → ADD(X1, X2)
TERMS(N) → S(N)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ADD(s(X), Y) → S(n__add(activate(X), Y))
DBL(s(X)) → S(n__s(n__dbl(activate(X))))

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(sqr(activate(X)), dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__dbl(X)) → DBL(X)
SQR(s(X)) → ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(X1, X2)
TERMS(N) → SQR(N)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
DBL(s(X)) → ACTIVATE(X)
SQR(s(X)) → DBL(activate(X))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
SQR(s(X)) → SQR(activate(X))
ACTIVATE(n__terms(X)) → TERMS(X)

The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(sqr(activate(X)), dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__add(X1, X2)) → add(X1, X2)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.